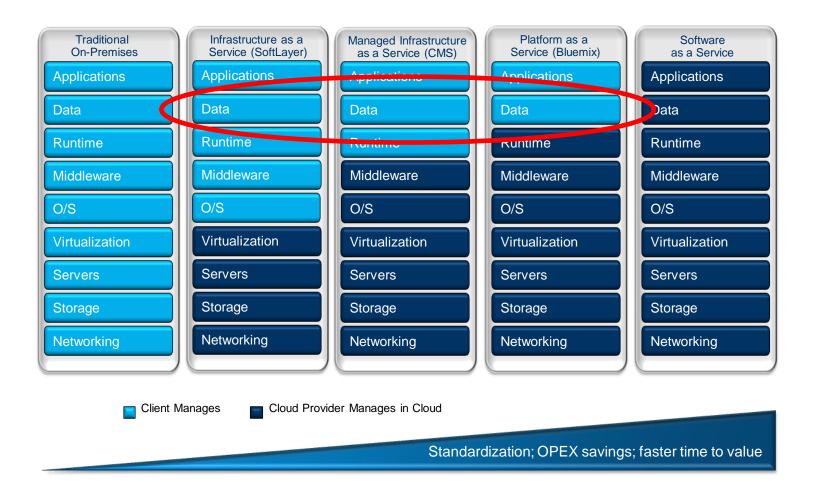


Cloud Security

Dr. Andreas Wespi

© 2015 IBM Corporation

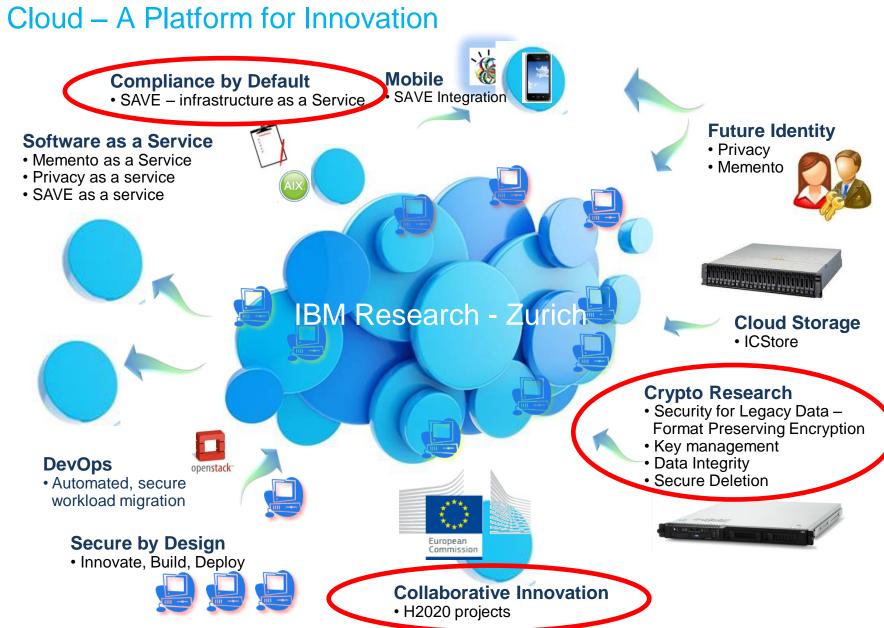
The Roots of Cloud Computing


Malcolm McLean, one of the founders of Cloud Computing, back in 1956

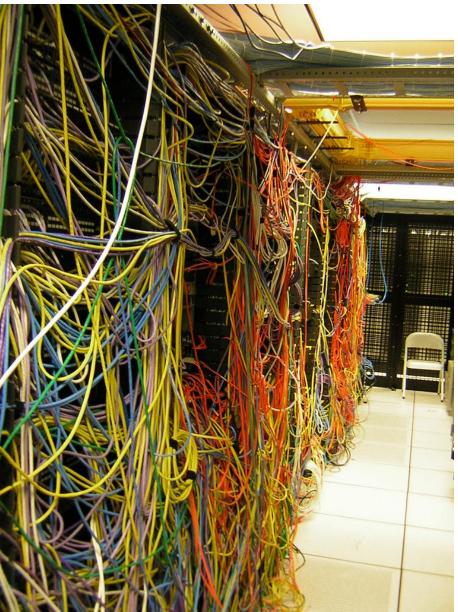
- Born on Nov. 14, 1913, in Maxton, North Carolina
- Malcolm McLean patented shipping containers in 1956
- He was not an ocean shipper but he was a trucker
- In 1956, loose cargo cost \$5.86 per ton to load
- Using ISO shipping containers, the cost was reduced to only \$0.16 per ton

Cloud is Not Equal to Cloud

Cloud Security from the Provider Perspective

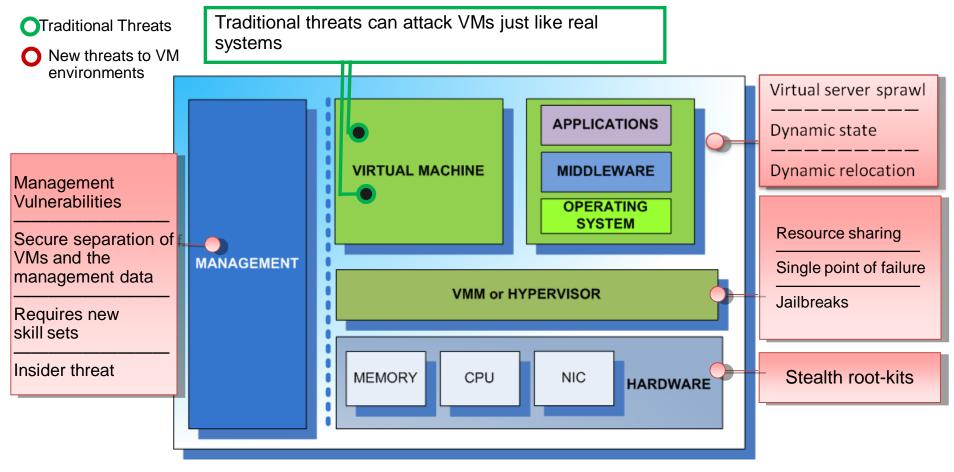

- Isolate different clients in the service platform
 - Enforcement
 - Verification
- Protect the infrastructure
 - Trusted computing base (TCB)
 - Integrity of hypervisors, kernels, and applications
 - Strong enforcement with trusted hardware
- Limit insider attacks
 - Least-privilege policy for operators
- Proof to the customer that processes work as designed

Cloud Security from the User Perspective


- What data to move to the cloud?
 - Physical location, legal aspects ("jurisdiction attacks")
- Loss of control and audit mechanisms
 - Physical direct access, log files
- Confidentiality of data?
 - Client "encrypts" all data and computations in the cloud
- Integrity of data?
 - Cloud proves the correctness of responses
- Who manages the keys and how?
 - Cryptography is a powerful technology but merely shifts power to those who control the keys
- How to destroy data in the cloud?
 - Control information proliferation

IBM

Security Audit of Virtualized Environments (SAVE)



What can go wrong in a Cloud (or a Datacenter)?

- Complexity \rightarrow error-proneness
- Amplified by virtualization
- Multi-tenancy and shared resources
- \rightarrow Isolation essential

Virtualization Threats

MORE COMPONENTS = MORE EXPOSURE

SAVE – Some Examples

- Are Zones isolated?
- Is my data accessible by other tenants?
- Is my workload running on the right hosts?
- What happens when a host fails?

VMWareSwitch

High

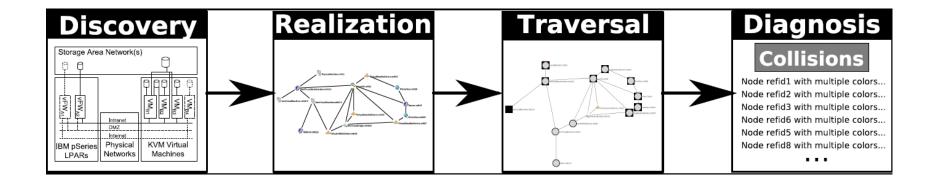
Security

Waesw

VMWareSwitch

WW lote Swats

PhysicalSwitch


Low Security

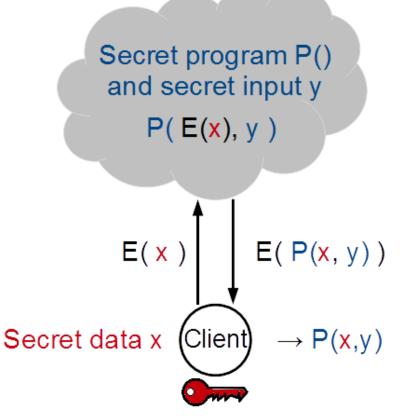
1,300 VMs 25,000 Nodes 30,000 Edges

9

SAVE – Virtualization Assurance

Discovery: Inventory of all Systems and all (relevant) Configurations

Realization Model: Unification of all data into a common graph-based model

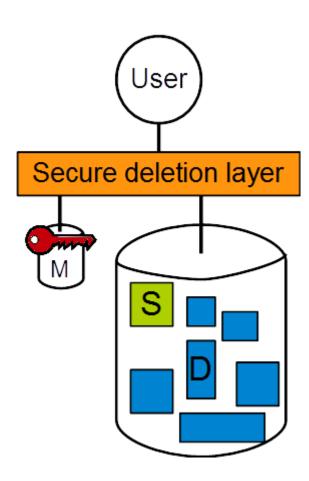

Traversal: Coloring of security zones based on individual trust assumptions

Diagnosis: Analysis to determine unauthorized flows and security failures

Computing on Encrypted Data

- How can one manipulate encrypted data?
 - How can a computer run an encrypted program — without knowledge of what the program does?
- Celebrated research topic in cryptography
 - Formulated in 1978
 - Millionaires problem (Yao 1986)
- Secure two-party computation
 - Garbled circuits
 - Quite practical today for limited functions
 - Fully Homomorphic Encryption
 - Breakthrough result (Gentry 2009) but very far from being practical

Secure Data Deletion

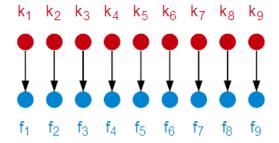

- Data needs to be erased
 - on client demand
 - by law

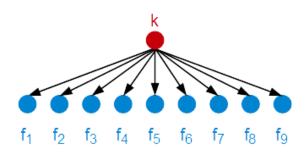
- ...

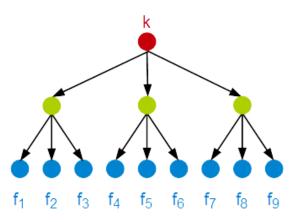
But ...

- Modern storage systems cannot easily erase data
- Common storage systems
 - Remove directory pointers
 - Mark space as free
 - Data remains accessible on a lower-level API
- Storage interfaces have no operation for "really erase"
- Virtualized storage systems make deletion impossible
 - Many layers of abstraction
 - Software-defined storage (SDS), cloud storage
- Every storage layer repackages and caches data, this leaves traces

System Model

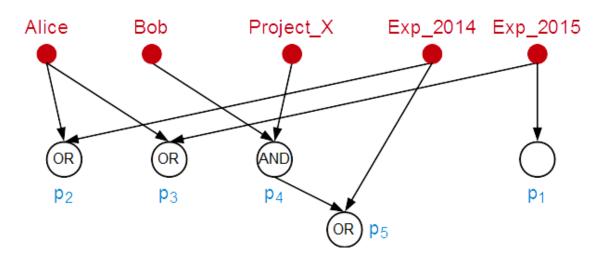



- Basic Approach [BL96, TLLP10]:
 - Encrypt data
 - Keep key(s) in controlled and erasable memory
 - Destroying key(s) makes data inaccessible
- Secure deletion layer
 Implemented through encryption
- Small, controlled erasable memory M – Stores key(s)
- Large, permanent memory
 - Cannot be erased
 - Contains protected data D
 - Auxiliary state S
- Deletion operation
 - Reads/writes/erases keys in M
 - Writes to S
 - Never touches bulk data D



Secure Deletion Schemes with Encryption

- Use a separate key for every protected item [P07, GKLL09, RCB12]
 - To delete an item, destroy its key
 - Huge master key, difficult to manage
 - Deletion cost is constant
- One key encrypts multiple protected items
 - Secure deletion of one item \rightarrow rekey operation
 - Choose fresh key
 - Re-encrypt surviving items with new key
 - Destroy old key
 - Small master key
 - Deletion cost is linear
- Tree of keys [DFIJ99]
 - For every tree node, super-key encrypts sub-keys
 - Items protected by keys at leaves
 - Delete one item \rightarrow rekey along path from root to deleted item
 - Small master key
 - Deletion cost is logarithmic



Our Approach: Policy-Based Secure Deletion

- Scheme supports arbitrary policies that are modeled as a circuit – AND, OR, and threshold gates
- Master key contains one key per attribute
- Attributes at input nodes (Alice, Bob, Project_X, ...)
 Initially, all are viewed as FALSE
- Protection classes p₁, p₂, p₃, ... value according to Boolean expression
- Deletion operation specifies attribute(s), for example,
 - Delete(Exp_2014) \rightarrow p₂, p₅ securely erased
 - Delete(Alice) \rightarrow p₂, p₃ securely erased
 - Delete(Bob) \rightarrow no effect; Delete(Project_X) \rightarrow p₄, p₅ securely erased

IBM Cloud Security Research Collaboration

- WITDOM (empoWering prIvacy and securiTy in non-trusteD envirOnMents) – www.witdom.eu
- ESCUDO (Enforceable Security in the Cloud to Uphold Data Ownership) – www.escudocloud.eu
- SUPERCLOUD (User-centric Management of Security and Dependability in Clouds of Clouds)
 - www.supercloud-project.eu
- Research projects (2015-18), in the EU Horizon 2020 Framework Programme
- Supported by the Swiss State Secretariat for Education, Research and Innovation (SERI)

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

For more Information

- How to reach me
 - Andreas Wespi <anw@zurich.ibm.com>

- IBM Research
 - IBM Research Zurich
 - <u>http://www.zurich.ibm.com</u>
 - Security research at IBM
 - <u>http://www.research.ibm.com/compsci/security</u>